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Abstract

The emergence of audio-visual foundation models under-
scores the importance of reliably assessing their multi-
modal understanding. The VGGSound dataset is commonly
used as a benchmark for evaluation audio-visual classifica-
tion. However, our analysis identifies several limitations of
VGGSound, including incomplete labelling, partially over-
lapping classes, and misaligned modalities. These lead to
distorted evaluations of auditory and visual capabilities.
To address these limitations, we introduce VGGSounder,
a comprehensively re-annotated, multi-label test set that
extends VGGSound and is specifically designed to evalu-
ate audio-visual foundation models. VGGSounder features
detailed modality annotations, enabling precise analyses
of modality-specific performance. Furthermore, we reveal
model limitations by analysing performance degradation
when adding another input modality with our new modality
confusion metric. Our dataset and project page are avail-
able at https://vggsounder.github.io/.

1. Introduction

Rigorous evaluation benchmarks have been instrumental in
assessing the effectiveness of audio-visual models [33, 43,
49, 57]. Specifically, multi-modal foundation models inte-
grating visual and auditory data aim to achieve a holistic
understanding of audio-visual content. However, the field
lacks large-scale modality-aware classification benchmarks
with ground-truth annotations indicating whether each la-
bel is visible, audible, or both. Such annotations would
allow detailed evaluations of multi-modal model capabili-
ties. To address this gap, we introduce VGGSounder, an
enhanced version of the widely-used audio-visual classifi-
cation dataset VGGSound [13], which facilitates modality-

*equal contribution

Figure 1. We introduce VGGSounder, a multi-label audio-
visual classification benchmark with modality annotations. We
extend the original VGGSound test set with human-annotated
audible , visible , and visible+audible labels. We
add meta labels for common confounders, such as background
music. We benchmark eleven recent audio-visual models on
VGGSounder. It enables selective analysis of a model’s auditory
and visual capabilities on classes relevant for the queried modality.

aware evaluation of audio-visual foundation models.
VGGSound has several notable limitations. First,

its data is inherently multi-label; for instance, a sin-
gle sample may simultaneously include labels such as
playing drum kit and playing acoustic guitar

when multiple instruments are present. Additionally, evalu-
ating how different modalities contribute to model perfor-
mance becomes difficult without explicit modality anno-
tations, as some labels are either not visually present or
not audible (e.g., certain instruments might only be audi-
ble but not visible in advertisements). Moreover, overlap-
ping label classes present another challenge; for example,
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the orchestra label often coincides with labels for indi-
vidual instruments. These issues result in systematic under-
evaluation of multi-modal audio-visual foundation models.

To overcome these limitations, we present
VGGSounder, an improved benchmark inspired by similar
advancements in other domains [12, 28]. We re-annotate
the dataset to create a comprehensive multi-label classifi-
cation setting by collecting detailed annotations for each
sample, including (1) additional classes present, (2) explicit
modality annotations to label modality misalignment,
(3) metadata indicating the presence of background music,
voice-over, or static images, and (4) merging of classes to
address overlapping classes. Consequently, VGGSounder
provides a robust, foundation-model-ready benchmark
enabling structured analysis of whether models rely on
audio or visual cues. Furthermore, we include meta-labels
(e.g., background music, voice-over, or static images) to
easily filter out unreliable labels during evaluation. Util-
ising VGGSounder, we evaluate audio-visual foundation
models, demonstrating their poor performance on our
benchmark. We find that the state-of-the-art, closed-source
Gemini models consistently rely exclusively on the visual
modality. We measure that effect with the modality
confusion, i.e. when models get distracted by an additional
input modality, which exposes the unsuccessful merging of
modalities. These findings highlight the importance of the
audio-focused VGGSounder benchmark as a critical tool
for accurately assessing audio-visual foundation models.

We make the following contributions:
1. We illustrate limitations of VGGSound in Sec. 3.
2. We curate VGGSounder with multi-modal human an-

notations for multi-label classification in Sec. 4.
3. We evaluate state-of-the-art audio-visual models, ob-

serving differences between embedding models and
autoregressive foundation models in Sec. 5.

4. We propose new metrics to quantify the negative im-
pact of using multiple input modalities in Sec. 5.

2. Related work

Audio-visual learning Many prior works consider audio-
visual tasks that include sound source localisation and sep-
aration [3, 5, 9, 15, 27, 56, 62, 67, 75, 80, 85, 86, 90],
event localisation [50, 51, 74, 78], audio-visual question an-
swering [48, 54, 83, 84], audio-visual synchronisation [14,
23, 25, 38, 39, 42], audio synthesis using visual informa-
tion [19, 26, 31, 44, 45, 61, 69–71, 87], or audio-driven
face image synthesis [7, 40, 77]. Audio-visual data has also
been leveraged for speech-related tasks, including speech
and speaker recognition [2, 4, 59], or the spotting of spoken
keywords [58, 66].
Furthermore, the natural alignment between audio and

Dataset # Clips # Classes
Multi-
label

Modality
labels

Annotation
pipeline

Flickr-SoundNet [10] 2M - ✗ ✗ -
Kinetics-Sound [7] 18.8k 34 ✗ ✗ MTurk
AudioSet [26] 2.1M 537 ✓ ✗ Manual

AVE [62] 4k 28 ✓ ✗ Manual
VEGAS [76] 132k 10 ✗ ✗ MTurk

Visually Aligned Sounds [15] 13k 8 ✗ ✗ MTurk
VGGSound [12] 200k 309 ✗ ✗ Classifiers+Manual

VGGSound-Sparse [32] 7.1k 12 ✗ ✗ Manual
Visual Sound [66] 91k 309 ✗ ✗ ImageBind [30]
VGGSounder 15.4k 309 ✓ ✓ MTurk

Table 1. Comparison of audio-visual classification benchmarks.

video has been exploited to learn improved audio-visual
embeddings for downstream tasks [6, 10, 11, 18, 20, 21,
46, 60, 63–65, 79]. Using both modalities jointly gener-
ally leads to performance boosts over using one modality
in isolation. We examine this observation closely and aim
to evaluate the effective use of multiple input modalities for
the video classification task. To enable this, we propose —
to the best of our knowledge, the first multi-label video clas-
sification benchmark that includes per-modality annotations
for every sample (see Tab. 1).

Audio-visual foundation models Recently, multi-modal
general-purpose models have emerged that can handle di-
verse downstream tasks without task-specific finetuning –
also referred to as multi-modal foundation models. For in-
stance, images or language were used as the bridge between
modalities including audio, image, and text [30, 89]. Build-
ing on this, PandaGPT [72] leverages Vicuna [22] and Im-
ageBind’s embedding space to train a general multi-modal
model exclusively on image-text pairs. Unified-IO 2 [53]
employs universal tokenisation to process audio, video, and
text. VideoLLaMA2 [21] uses a Spatial-Temporal Con-
volution connector in the visual branch before projecting
audio and visual information into the LLM input space.
The recently introduced Ola model [52] advances omni-
modal processing through progressive modality alignment,
using video to bridge audio and visual information. The
Gemini models [73] are closed-source multi-modal models
that achieve impressive performance on diverse downstream
tasks. We use VGGSounder to benchmark the audio-visual
capabilities of the aforementioned models.

Audio-visual classification benchmarks Audio-visual
classification is distinct from general video classification
(e.g. on YouTube-8M [1]), as classes typically cover both
audible and visible actions or events. Commonly used
datasets for audio-visual classification include Kinetics-
Sound [8] sourced from the Kinetics dataset [41], Flickr-
SoundNet [11] scraped from Flickr, and AudioSet [29] and
VGGSound [13], both sourced from YouTube.
Kinetics-Sound features manual labels of human actions,
but covers only 34 classes. Flickr-SoundNet is much larger,
but only a small subset is labelled. Similarly, only a small
fraction of the roughly 2M AudioSet samples are annotated
and have aligned audio and video.
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Figure 2. Limitations of VGGSound. We show video frames from videos in the VGGSound test set along with their annotated label
(grey) to demonstrate various limitations. A. VGGSound samples are labelled with a single class, yet many videos contain multiple distinct
classes. B. Additionally, many classes partially overlap or are ambiguous. C. Some samples are labelled with classes that are not present
in one of the modalities (i.e., the labelled class is not visible or audible).

In contrast, VGGSound ensures audio-visual correspon-
dence for around 200 000 samples and was curated with an
automatic pipeline involving class-list generation, and audi-
tory and visual content verification. The visual verification
step ensures that a class is represented in the centre frame.
The VEGAS dataset [88] provides better quality as-
surances for a small subset of AudioSet with only 10
classes. Visually Aligned Sounds [16] subsamples VE-
GAS and AudioSet after human verification, and Visual
Sound [76] subsamples VGGSound using a multi-modal
embedding model, both aiming for high audio-visual corre-
spondence. Similarly, VGGSound-Sparse [37] is a subset of
VGGSound with a focus on temporally and spatially sparse
synchronisation signals (e.g., short loud noises).
Overall, VGGSound strikes the best balance between size,
generality, and annotations, making it a common bench-
mark for audio-visual classification. We update VGGSound
to sustain its usability for the development of the next gen-
eration of multi-modal foundation models.

3. Limitations of VGGSound
Since we are interested in the VGGSound dataset for bench-
marking audio-visual multi-modal models, our analysis fo-
cuses on the VGGSound test set,1 which consists of 15 446
video clips, each 10s long and labelled with one of 309
classes. We qualitatively identify several limitations of the
VGGSound annotations outlined below and in Fig. 2.
Co-occurring classes While VGGSound’s visual verifi-
cation aimed to minimise multiple classes co-occurring
in a clip, we find that most samples nevertheless
clearly contain multiple classes, see Fig. 2A. In some
cases, classes are temporally separated, e.g., show-
ing male speech, man speaking and then cutting to

1Although these issues most likely also apply to the training set.

footage of firing cannon . Most often, classes co-occur
at the same time, sometimes for the entire duration of the
video clip. Overlapping classes are often related, such
as different instruments in a band or orchestra, but can
also be entirely unrelated, e.g., donkey, ass braying

co-occurring with playing violin . As additional em-
pirical evidence, we provide a co-occurrence matrix com-
puted using CAV-MAE [33], a state-of-the-art audio-visual
model, in Appendix D.

Overlapping classes The issue of co-occurring classes
is exacerbated by many of the 309 automatically gen-
erated classes partially overlapping in their definition,
as illustrated in Fig. 2B. We found two pairs of
synonymous classes: timpani and tympani and
dog barking and dog bow-wow . Additionally, some
classes are strict subclasses of others, such as the gender-
specific versions of cattle mooing : cow lowing

and bull bellowing ; or the more specific variants
of people eating : people eating noodle and
people eating apple . Finally, several classes com-
monly appear together, such as playing snare drum

which is often played as part of a drum kit , or seman-
tically similar concepts: running electric fan and
air conditioning noise , and sloshing water

and splashing water .

Modality misalignment Despite VGGSound’s auditory
and visual content verification, we find that many of
the annotated classes are not visible or not audible, as
shown in Fig. 2C. A large fraction of videos contains
background music, voice-over and narration, or other
background sounds like bird chirping, tweeting or
cricket chirping without a visible source. Similarly,
some videos contain visible but inaudible cues for classes
like sea waves . Static images and slide shows accompa-
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Figure 3. Overview of VGGSounder. A. Most samples contain more than one label. B. More than a quarter of labels are audible but not
visible. In contrast, only a tiny fraction is visible but not audible. C. Speech and bird sounds are the most common classes; more details
can be found in Appendix B. D. Forty percent of the samples contain some combination of background music , voice over , and
static image(s) , making the classification task significantly harder.

nied by music or other sounds are other frequent sources of
misaligned modalities. Finally, some classes are misaligned
by definition: wind noise is only audible and not visible.
We find that, 48.43 % of the original VGGSound test sam-
ples have misaligned modalities. This finding challenges
the widely held assumption that VGGSound has strong
modality alignment [32, 47].
Other datasets, such as Visually Aligned Sounds, Visual
Sound, and VGGSound-Sparse (see Sec. 2) omitted samples
with misaligned modalities. In contrast, we contend that
inaudible or invisible cues are common in natural videos
and should be considered when benchmarking multi-modal
models. We, therefore, place particular emphasis on craft-
ing reliable modality annotations for all samples, allowing
users to evaluate models on samples that guarantee modal-
ity alignment, and on those where classes are only visible
or only audible (see Tab. 1).

Takeaway 1 VGGSound suffers from several issues:
class co-occurrence not captured by single labels, over-
lapping class definitions, and modality misalignment,
see Fig. 2.

4. Building VGGSounder
We propose a series of fixes for VGGSound’s issues, ulti-
mately resulting in the updated VGGSounder benchmark.
We are not the first aiming to future-proof an existing
benchmark: [12] analysed shortcomings of ImageNet [24],
ultimately proposing switching to a multi-label classifica-
tion task with additional manual labels. [28] similarly re-
annotated samples in MMLU [35, 36] to fix labelling errors.
Both works inspire our approach to improve VGGSound.
To deal with co-occurring classes, we switch to a multi-
label classification setting. This effectively handles most
overlapping class definitions: a strong model can assign a

high probability to multiple classes, even if they partially
overlap. This also allows us to ensure that synonymous
classes, as well as subclasses and their superclass, always
appear together in the ground-truth labels.
To deal with modality misalignment, we add a modal-
ity annotation to each label. For example, we can label
a video as containing people clapping in the audio
and containing playing volleyball in the audio and
video data. We also add meta-labels to indicate whether a
sample contains background music , voice over , or
static image(s) to optionally treat these cases sepa-
rately during evaluation.
We employ a pipeline similar to [12] to annotate multiple
labels per sample, which we outline below.

Collecting proposals We create a gold standard refer-
ence set by labelling a small, randomly selected subset of
VGGSound test samples with four in-house computer vi-
sion experts. The interface used for this first labelling step
is shown in Appendix A. We extend the subset until each
class is covered at least once, leading to a final size of 417
samples. Labels from different annotators are merged via a
simple majority vote.
Given the gold standard set, we want to find a solid strat-
egy for automatically generating label proposals which are
shown to the humans labelling the test set. This should have
a recall greater than 90 % while maximising precision com-
pared to the gold standard labels to produce a small set of
proposals with good label coverage. Our final strategy com-
bines predictions from several state-of-the-art models with
a manual heuristic to obtain 93% recall for an average of 30
proposals per sample, see Appendix A.

Human labelling We use Amazon Mechanical Turk to
re-annotate the entire VGGSound test set. For each
sample, we first ask annotators to indicate whether the
video contains background music , voice over , or
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static image(s) . Then, annotators are asked to indi-
cate for each label proposal whether the class is audible

and/or visible . Finally, annotators can add a class if it is
missing from the proposals. Annotators were paid the US
minimum wage; the interface used is shown in Appendix A.
We let annotators label the samples in batches of 20, each
containing two gold standard samples as catch trials. We
reject and re-annotate all batches with a catch trial F1-score
below 25%. In addition, we obtain modality annotations for
the original VGGSound labels and meta-classes.
Final labels We merge all obtained annotations using ma-
jority voting. Additionally, we automatically add synony-
mous classes and superclasses for a given subclass, e.g., we
add cattle mooing whenever cow lowing is in the set
of labels. Further details can be found in Appendix A.

Takeaway 2 We develop VGGSounder: A multi-label
video classification benchmark extending VGGSound
with human-annotated multi-labels, modality annota-
tions, and meta-labels as summarised in Fig. 3.

5. Benchmarking audio-visual models
We use VGGSounder to benchmark four popular audio-
visual embedding models and seven foundation models, and
analyse their auditory and visual capabilities.
Models We evaluate the audio-visual embedding models
CAV-MAE [33], DeepAVFusion [57], AV-Siam [49], and
Equi-AV [43]. Those were finetuned on VGGSound.
We benchmark several models from the closed-source Gem-
ini family [73] in a zero-shot evaluation protocol. Further-
more, we use LLM-assisted evaluation to evaluate the fol-
lowing four open-source autoregressive foundation models:
VideoLLaMA-2 [21], Unified-IO-2 [53], Panda-GPT [72],
and Ola [52]. All models are evaluated in three modes: us-
ing unimodal-audio, unimodal-visual, or multi-modal (au-
dio and visual) inputs. Further details about models and
their evaluation are provided in Appendix C.1.
Metrics To benchmark the models on VGGSounder, we
use multi-label classification metrics. For embedding mod-
els, all metrics are computed for the top-k predictions, with
k ∈ {1, 3, 5, 10}. In contrast, prompting foundation models
yields an unordered set of class predictions of varying size,
and we compute only a single metric using the entire set. As
a result, metrics are not directly comparable between em-
bedding and foundation models. To get a sense of their rel-
ative performance, we report metrics for embedding models
for k = 1 in the main text, matching the median number of
predictions per sample for the foundation models.
For open-source models such as VideoLLaMA-2, Ola,
Unified-IO-2, and Panda-GPT, we employ LLM-assisted
evaluation [55, 81], in which the Qwen-3 model [82] is
tasked to assess the correspondence between model outputs

and target classes. Closed-source models from the Gemini
family are evaluated by providing the full list of 309 classes
as input. Further details on the evaluation procedures and
exact prompts are provided in Appendix C.
Subset accuracy compares the predicted label set to the
ground-truth label set and reports the fraction of samples
for which they match. This is our strictest metric.
F1-score is the harmonic mean of precision and recall. It is
strictly larger than the subset accuracy.
Hit reports the fraction of samples for which any of the pre-
dicted labels are part of the ground-truth label set. This is
the most lenient metric which is strictly larger than the F1-
score. We include this metric for ease of comparison to the
“ReaL-Accuracy” used in [12].
All metrics are computed, on a subset of VGGSounder
without background music labels, separately for each
input modality (audio, video, and audio-visual) and label
modality. We use lowercase symbols a, v, and av to indi-
cate the input modality: audio-only, visual-only, or audio-
visual inputs, respectively. For label modality, we use up-
percase symbols A, V, and AV, referring to the subsets of
the benchmark with audible, visible, and audio-visual la-
bels. We further include A¬V (audible but not visible) and
V ¬A (visible but not audible) to analyze unaligned cues.
For clarity, we define shorthand notations such as a = a(A)
to denote the model’s performance on the audible subset
A using only audio input. Analogously, v = v(V ) and
av = av(AV ) refer to video-only and audio-visual per-
formance on their respective label subsets. Furthermore,
we use micro-aggregation to balance the contribution from
each class.
We additionally measure the negative impact of using multi-
modal inputs. In particular, µ is a new metric we propose to
measure a model’s modality confusion (µ). We define it as

µM = 100 ·
∑

x∈M I[m(x)-correct ∩ av(x)-wrong]
Ntotal

, (1)

where M ∈ [A, V,A∩ V ] and their associated modality in-
puts are m ∈ [a, v], correct/wrong is determined as in the
Hit score (with k = 1 for embedding models). Ntotal refers
to the total number of samples. µ measures the fraction of
samples a model correctly classified given an input modality
but got wrong when using both modalities simultaneously.
We additionally report µA∩V as the percentage of samples a
model could solve in either modality unimodally but could
not solve multi-modally. In other words, the modality con-
fusion µ captures how frequently a model is distracted by
an additional input modality, which can indicate the unsuc-
cessful merging of modalities.

Takeaway 3 We propose a new metric, modality con-
fusion µ, that measures how frequently a model is dis-
tracted by an additional input modality; see Eq. (1).
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Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

Embedding Models
CAV-MAE 13.19 19.23 24.49 34.46 34.91 42.62 13.94 19.00 62.29 53.44 64.17 3.58 6.43 0.77
DeepAVFusion 10.19 11.10 21.53 25.31 21.29 37.35 10.37 10.55 45.77 32.61 56.27 3.74 3.93 0.17
Equi-AV 11.60 10.52 20.00 29.39 20.42 34.69 12.55 10.65 53.12 31.26 52.24 6.97 7.13 1.38
AV-Siam 12.79 19.75 22.83 33.30 35.41 39.43 12.90 18.21 60.19 54.20 59.36 9.36 8.80 3.58

Closed-source Foundation Models
Gemini 1.5 Flash 1.78 14.44 16.44 14.49 36.98 42.52 15.61 21.61 32.73 47.36 59.10 10.22 4.25 0.77
Gemini 1.5 Pro 3.05 20.86 22.53 19.26 49.73 53.74 17.73 22.90 35.03 69.23 75.42 2.09 4.85 0.57
Gemini 2.0 Flash 1.85 12.54 12.69 11.80 34.08 36.45 6.19 18.90 18.51 43.83 47.72 2.39 5.43 1.00

Open-source Foundation Models
VideoLLaMA 2 12.86 19.85 24.47 38.87 47.82 52.35 20.34 28.08 58.91 52.02 59.80 12.72 5.46 2.95
Unified-IO 2 11.94 11.56 25.61 35.31 27.92 48.89 21.38 16.53 54.39 31.05 65.11 8.70 5.16 1.79
PandaGPT 3.19 4.19 5.46 18.73 18.56 20.85 16.82 14.40 21.08 17.01 18.82 7.59 5.90 2.47
Ola 14.11 8.69 18.19 47.70 24.85 46.48 40.44 13.45 59.05 24.57 51.51 15.47 6.80 2.49

Table 2. Audio-visual video classification results on VGGSounder. We report multi-label classification metrics (subset accuracy, F1-
score, Hit accuracy, modality confusion µ) on background music free subset for audio- a(A), visual - v(V ), audio-visual - av(AV ),
audio-only - a(A¬V ) and video-only - v(V ¬A) inputs. The embedding models CAV-MAE, DeepAVFusion, and Equi-AV were finetuned
on the VGGSound training set. We report metrics for k = 1 here and for other k in Appendix D. The closed sourced multi-modal
foundation models Gemini and open-sourced models use a zero-shot evaluation protocol and LLM-assisted protocol respectively.

5.1. Re-evaluating the state of the art
We present the benchmark performance of state-of-the-art
audio-visual models in Tab. 2.
Overall performance Unsurprisingly, all models perform
best with access to both input modalities (AV). Across
all metrics, both open- and closed-source general-purpose
models perform comparably to the purpose-built embed-
ding models CAV-MAE and AV-Siam. This indicates that
foundation models have reached — and for some modal-
ities exceeded — the performance of specialised models.
However, the embedding models finetuned on VGGSound
generally have stronger unimodal performance with audio
inputs (A) compared to visual inputs (V). Interestingly, this
trend is reversed for most foundation models, which seem
to be biased towards visual inputs, with unimodal video per-
formance (V) being substantially higher than unimodal au-
dio performance (A).

Takeaway 4 Foundation models perform comparably to
finetuned embedding models. Embedding models more
heavily rely on audio cues than on visual ones, while
foundation models exploit visible cues rather than audi-
ble ones, see Tab. 2.

Modality confusion The modality confusion score µ shows
that, for all models, a notable fraction of test samples
(4–11%) were misclassified when an additional modality
was included—despite being correctly classified with uni-
modal input. Furthermore, for all models, a small portion
of test samples is not solvable multi-modally even though

they were solvable in both modalities alone (µA∩V ). In ad-
dition, for the majority of foundation models, µA is higher
than µV , indicating that these models forget audible la-
bels more often than visible labels when a second modal-
ity is introduced. This suggests that, in such cases, they
prefer visible information over audible information. In-
terestingly, this phenomenon is reversed for the majority
of embedding models. This insight is made possible by
VGGSounder’s per-label modality annotations and shows
that all models are susceptible to being distracted given an
additional modality. This is a concerning issue for multi-
modal models since they should preserve unimodal capabil-
ities when adding a second modality. Being able to evaluate
this behaviour on the VGGSounder benchmark is a first step
towards enabling the development of mitigation strategies,
eventually resulting in stronger audio-visual models.

Takeaway 5 Our modality confusion score reveals that
all models are negatively impacted by additional modal-
ities for a substantial amount of samples (see Tab. 2) and
provides a means to quantify modality ensembles.

Performance across modalities Fig. 4 shows the perfor-
mance profiles across modalities. At first glance, we can see
that VideoLLaMA-2’s performance is well balanced for dif-
ferent input modalities, while models from the Gemini fam-
ily distinctly underperform on audio inputs. In contrast, em-
bedding models exhibit a moderate balance across modali-
ties, with DeepAVFusion and EquiAV showing slight un-
derperformance for visual input.
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As Fig. 4 also illustrates, profiling of this kind is enabled
through the modality annotations in VGGSounder. In con-
trast, VGGSound assumed that all classes are perceivable
in both modalities, and did not account for background
sounds. This resulted in consistent under-evaluation of
foundation models (that were not finetuned on VGGSound)
for audio inputs.
In addition to the radar plot in Fig. 4, we provide results
on VGGSound in Appendix D, showing that all models
have substantially lower performance than their hit scores
in Tab. 2. This confirms that many model predictions were
incorrectly flagged as false positives in VGGSound due to
the incomplete ground-truth labels, painting a distorted pic-
ture of models’ limitations.
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Figure 4. VGGSounder more accurately captures model per-
formance across input modalities. We show the Hit score on
VGGSounder and accuracy on VGGSound, normalised by the per-
model maximum performance on each benchmark. Specifically
for foundation models, we observe a significant difference in per-
formance between VGGSound and VGGSounder.

Takeaway 6 VGGSounder’s more complete ground-
truth labels allow for more accurate, modality-specific
profiling of model performance (see Fig. 4).

5.2. Performance analysis using meta-classes
VGGSounder includes annotations of three meta-classes for
each sample: background music indicates whether sam-
ples contain music without a visible source, voice over

similarly marks speech without a visible source, and
static image(s) flags that the visual stream consists of
one or only a few static visual frames.
These new meta-classes allow us to evaluate the model be-
haviour in challenging scenarios where information from

one modality dominates. We consider the performance dif-
ference between samples that do contain a meta-label and
samples that do not contain it. Positive numbers indicate
that the models perform better on the subset with meta-
labels. In Tab. 3, we summarise the main findings, focussing
on F1-score as the most balanced multi-label metric. Addi-
tional results are provided in Appendix D.
Background music All models perform worse on video
samples containing background music. This indicates that
it is challenging to decouple background audio from the rest
of the video. The evaluated models are not good at differ-
entiating between sound sources without visual cues, e.g.
predicting different instruments in the background music.
Voice over In contrast to background music, we observe
a clear difference between embedding models and founda-
tion models for samples with voice-over. While the au-
dio classification performance of embedding models drops
substantially. This drop is only slight for VideoLLaMA-2
and Unified-IO 2, and the performance of other foundation
models even improves. This indicates that the foundation
models are less distracted by voice-over.
Static image(s) The impact of static images is more nu-
anced: First, audio classification performance improves
for embedding models while it decreases for the half of
the foundation models. This shows that the purpose-built,
VGGSound-finetuned embedding models can more accu-
rately predict specific sounds in the absence of other cues.
Second, visual classification performance on static images
drops for all models, suggesting that models rely on rich
temporal cues to make accurate predictions.
Samples without any meta-label When comparing the
model performance on samples without background music,
static images, or voice-over annotations (column neither in
Tab. 3) to the performance on samples that contain either of
meta classes, we see a performance gain. This finding con-
cludes that these three categories form challenging subsets
of the dataset.

Takeaway 7 Samples with background music, static
images(s), and voice over provide distinct challenges for
each model (see Tab. 3). This highlights VGGSounder’s
value for comprehensive model evaluation.

5.3. Impact of VGGSounder labels
Our relabelling pipeline adds two types of labels to those
in VGGSound: (1) automatically generated labels based on
synonymous classes and sub-/superclasses, and (2) human-
curated labels. In Tab. 4 , we ablate the impact of each type
of added labels in terms of the relative performance gains
(Hit score). A complete breakdown of the effects across all
models and metrics is provided in Appendix D. While per-
formance is consistently higher with automatically added
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background music voice over static image(s) neither

∆ F1 ∆F1 ∆ F1 Sub. Acc. w/ Sub. Acc. w/o ∆ F1

Model a v av a a v a v a v a v av

Embedding Models
CAV-MAE −3.43 −3.60 −4.01 −8.19 4.75 −7.39 22.13 19.48 11.98 19.21 −3.14 −4.71 −4.65
DeepAVFusion −3.65 −4.86 −4.27 −9.05 4.33 −4.88 15.98 10.96 9.30 10.81 −3.97 −3.71 −5.07
Equi-AV −4.07 −2.53 −2.54 −7.13 4.26 −5.99 19.00 10.39 10.49 10.45 −3.04 −3.58 −3.33
AV-Siam −3.75 −4.39 −5.10 −7.96 5.23 −6.85 22.04 19.81 11.57 19.52 −3.19 −4.97 −5.20

Closed-source Foundation Models
Gemini 1.5 Flash −1.17 −2.39 −4.17 17.25 −5.28 −7.31 1.43 13.47 1.68 14.39 4.57 −4.07 −6.15
Gemini 1.5 Pro −1.86 −3.67 −5.80 18.16 −4.90 −6.86 2.33 22.08 2.87 20.80 5.19 −3.28 −4.02
Gemini 2.0 Flash −0.47 −1.92 −3.47 0.20 1.96 −7.11 3.85 10.88 1.53 12.40 −0.09 −3.97 −4.53

Open-source Foundation Models
VideoLLaMA 2 −2.43 −4.62 −5.52 −3.97 4.22 −9.52 19.00 18.18 12.04 19.70 −1.48 −4.86 −5.18
Unified-IO 2 −6.41 1.15 −4.18 −4.98 1.88 −6.19 17.92 9.58 10.88 12.00 −3.42 −0.57 −4.53
PandaGPT −5.98 −0.93 −2.75 3.92 −3.68 −4.86 3.32 4.87 2.91 4.24 −1.92 −0.58 −2.53
OLA −11.84 0.63 −2.87 10.09 −8.24 −5.40 14.87 8.60 12.88 8.89 −2.54 −0.49 −0.24

Table 3. Summary of performance differences in the presence/absence of meta-classes. Difference in F1 scores (∆ F1) for audio-
visual video classification on VGGSounder between videos with a meta-class and those without it. Positive numbers (∆) indicate better
performance when the meta-class is present. Additional results are provided in Appendix D.

Human labels ↑ Auto labels ↑

Model A V AV A V AV

Gemini 1.5 Flash 29.28 14.59 16.36 0.48 0.93 1.51
Gemini 1.5 Pro 28.61 25.52 27.63 0.31 1.99 2.10
Gemini 2.0 Flash 8.80 12.16 11.13 0.22 1.12 1.28

Table 4. Impact of added labels using different strategies in
VGGSounder. We show the change in multi-label classification
performance (∆ Hit) when adding automatically added (Auto) or
human-annotated (Human) labels to VGGSounder, and compare
to the original VGGSound data.

labels (Auto), the increase is noticeably smaller than that
for human-curated labels. Paired with the observation that
models do frequently predict correct classes that were not
part of the original VGGSound label set, this indicates that
human-curated labels better cover the ground truth.

Takeaway 8 Automatically added labels are an impor-
tant step, but human-curated labels have a bigger effect
on eliminating incorrectly flagged false positives, under-
scoring the value of accurate human annotation.

6. Discussion

Choice of VGGSound as base dataset VGGSound is com-
monly used to evaluate audio-visual models on the multi-
modal video classification task. As it is currently the most
suitable testbed for audio-visual classification tasks (due
to its size, diversity of categories, non-constrained setting,
and relatively strong audio-visual correspondence), it serves
as an optimal starting point for our substantially improved
VGGSounder benchmark with a multi-label evaluation pro-

tocol for foundation models that makes the benchmark suit-
able for meaningful evaluation.
Multi-label vs single-label classification Video content is
inherently complex, often containing multiple co-occurring
objects and actions both within and across modalities. This
makes it unlikely that a given clip belongs to just one class
as is the case in the single-label classification task. There-
fore, our VGGSounder extends the VGGSound test set to
multi-label classification. Unlike models trained on a nar-
row single-label dataset, foundation models develop versa-
tile representations.

7. Conclusion
We introduced an modality-aware evaluation set for audio-
visual foundation models. VGGSounder builds on the
widely used VGGSound dataset by adding: (a) comprehen-
sive human annotations for missing classes, (b) specifying
modality information per label, (c) introducing specialised
meta-labels for frequently occurring real-world challenges,
and (d) using heuristic methods to improve label quality.
Through our newly introduced metric, modality confusion,
we observe that incorporating additional modalities does
not necessarily yield better results. Models often become
more confused on a substantial subset of test samples. Fur-
thermore, finetuned embedding models tend to rely heavily
on audio cues, while foundation models depend more on
visual information. Additionally, our meta-label analysis
highlights distinct challenges across various specialised yet
commonly occurring scenarios such as background music,
static images, and voice-overs. Overall, we hope that the
VGGSounder benchmark will advance the evaluation and
development of foundational audio-visual models.
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Supplementary Material:
VGGSounder: Audio-Visual Evaluations for Foundation Models

A. VGGSounder: Relabelling VGGSound
In the main paper, we highlighted several critical shortcomings of VGGSound, such as co-occurring classes, partially over-
lapping class definitions, multiple classes per sample, and modality misalignment. This appendix provides additional de-
tails about the relabelling process for obtaining the VGGSounder benchmark, addressing the specific issues identified in
VGGSound.

A.1. Labelling of the gold-standard subset
As described in Sec. 4, we started by creating a high-quality reference subset (gold-standard) for reliable label verification.
Four experienced computer vision researchers manually annotated randomly selected 10-second videos from the VGGSound
test set. Annotators labelled classes clearly present either audibly, visually, or both. We ensured full class coverage by
continuing the annotation process until all classes appeared at least once, resulting in 417 samples. These annotations were
merged using majority voting. The annotation interface employed in this phase is illustrated in Fig. 5.

Figure 5. Interface used to annotate the gold standard set in-house.

The annotators were instructed to try to identify all audible and visible classes in the video, including hard cases when
background music contains several instruments that compose the melody. For instance, a common instrument for the country
music genre would be playing the drum kit , female singing , male singing , playing the bass guitar ,
playing electric guitar etc. The annotators are expected to do their best to identify all of the instruments.

Gold-standard samples serve as high-quality annotations for further labellers’ cross-validation and automatic quality as-
sessment. If a labeller shows a high agreement score with the gold-standard labels, we expect them to have high-quality
labels outside of the gold-standard subset.

While analysing gold-standard labels, we made several interesting observations (see Tab. 5):
1. There is a significant portion of samples in the gold-standard set for which the original VGGSound labels (24.46%) are

absent.
2. The proportion of classes that are only audible across all samples is significantly higher than that of the visible ones.
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Metric Value
Samples 417
Original class correct 283 (67.87%)
Original class audible 39 (9.35%)
Original class visible 22 (5.88%)
Original class absent 102 (24.46%)
Original class is only class 71 (17.03%)
Classes total 309
Classes only visible 6
Classes only audible 25
Average labels added per sample 1.39

Table 5. Relabelling statistics for the gold-standard subset.

While we cannot fix the second issue without substituting the dataset, the first issue quantifies the error introduced by
VGGSound and its automatic labelling and verification and can be eliminated with human labelling.

We ran a second round of gold-standard annotations where one computer vision expert checked all 15446 samples and
annotations in the VGGSound test set for their validity and enriched the correct labels with modality annotations. The
interface for this annotation is illustrated in Fig. 6.

Figure 6. Interface used in-house to annotate the original labels in the VGGSound test set.

The second set of gold-standard labels firstly enriched the original VGGSound labels with modality annotations, but most
importantly confirmed and further improved the estimates in Tab. 5 resulting in the following observation:

Around 48.43% of the original VGGSound test samples have either incorrect target labels or misaligned modalities.

The two sets of gold-standard annotations, while having mixed reliability (cross-validation with four people vs. one person),
serve as a strong grounding signal for our subsequent MTurk annotation pipelines.

A.2. Label proposals
To effectively scale human annotations to the entire test set, and to simplify the job for MTurk annotators, we introduced
a label proposal generation strategy that combines state-of-the-art audio-visual model predictions with label heuristics. We
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(a) Example labelling interface for one video sample. (b) Labelling instructions

Figure 7. Labelling interface and instructions for our full annotation pipeline that we ran on MTurk. (a) Crowd workers are presented
with a 10-second long video clip from the VGGSound test set, along with label proposals. They are tasked to select if those or additional
VGGSound classes are audible or visible in the video clip. Furthermore, the workers are asked about meta-classes, such as background
music, voice-over, and static images. They also have the option of searching for new classes that are missing in the proposals. (b) Labelling
instructions provided to workers on Amazon Mechanical Turk before labelling the first video sample.

considered the following steps in our label proposals:

1. Model predictions:
• We provide the original VGGSound label, extended with modality annotations curated by an in-house labeler, as well

as the top-1 predictions of the following models 2 with visual and audio-visual inputs:
– CAV-MAE
– AVSiam
– Equi-AV
– DeepAVFusion
– Gemini 1.5 Flash
– Gemini 1.5 Pro

• We further included the top-5 predictions when using audio inputs from the same models.
2. Consensus labels:

• We created a secondary pool from the top-10 predictions across all modalities from AVSiam, CAV-MAE, and Equi-AV.
Additionally, labels associated with the highest 60,000 logits or probabilities across the dataset were added.

• Labels were proposed from this pool if at least two models independently agreed on their presence.
3. Common classes:

• Regardless of model predictions, we always proposed frequently occurring classes such as:

wind noise , wind rustling leaves , male speech, man speaking ,
female speech, woman speaking , child speech, kid speaking , bird chirping, tweeting ,

cricket chirping , sea waves .

This strategic combination ensured an average of 30 proposals per video, achieving approximately 93% recall relative to the
gold-standard set annotations.

A.3. Human labelling
Following our proposal strategy, we conducted extensive human annotation via Amazon Mechanical Turk (MTurk) to verify
and expand the automatically generated proposals:
• Worker qualifications: We used two types of Amazon Mechanical Turk (AMT) worker qualifications for our annotations.

Half of the tasks were completed by AMT Masters with approval rates above 98%, while the other half were assigned to
2Gemini 2.0 Flash, VideoLLaMA-2, Unified-IO-2, Panda-GPT, and Ola were not used when the proposals were generated.
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Figure 8. Class label frequency in VGGSounder by modality.

non-Master workers who also maintained approval rates above 98%. We adopted this approach as the larger non-Master
worker pool resulted in significantly faster task completion.

• Annotation interface: Annotators reviewed each video to confirm the presence and modality (audible, visible, or both) of
proposed labels. They could also suggest additional missing labels. Workers received detailed instructions (see Fig. 7b),
and the annotation interface used is presented in Fig. 7a.

• Quality control: Videos were grouped into batches of 20, each containing two gold-standard samples as catch trials.
Batches scoring below 25% F1-score on these catch trials were rejected and reassigned.

A.4. Automatically added classes

Class Added Class

timpani tympani
tympani timpani
dog barking dog bow-wow
dog bow-wow dog barking
Barn swallow calling Bird chirping, tweeting
Eagle screaming Bird squawking
Canary calling Bird chirping, tweeting
Mynah bird singing Bird chirping, tweeting
Magpie calling Bird squawking
Warbler chirping Bird chirping, tweeting
Wood thrush calling Bird chirping, tweeting
Goose honking Bird squawking
Duck quacking Bird squawking
Penguins braying Bird squawking
Baltimore oriole calling Bird chirping, tweeting
Crow cawing Bird squawking
Airplane flyby Airplane
Baby babbling People babbling
Bull bellowing Cattle mooing
Cow lowing Cattle mooing
People eating noodle People eating
People eating apple People eating
Eating with cutlery People eating
Bathroom ventilation fan running Running electric fan
Striking bowling Bowling impact

Table 6. Class mapping used to automatically add syn-
onymous classes and superclasses.

To resolve overlapping and ambiguous class definitions discussed in
Sec. 3, we automatically included synonymous classes and related su-
perclasses whenever subclasses were deemed present. For instance,
identifying cow lowing led to automatically including the super-
class cattle mooing . A detailed overview of these automatically
added classes and their relationships is provided in Tab. 6.

A.5. Final pipeline
In the last aggregation stage, we merge all crowd-sourced (Mechan-
ical Turk) and in-house annotations so that every video is reviewed
by at least three annotators. Annotators are ranked by their mean F1
score on the gold-standard clips, and the top three for each video are
retained. Their votes are then combined with majority voting, pro-
ducing the final label set, which achieves 0.68 macro-averaged F1 on
the gold-standard data. As noted in the main paper Sec. 5, our default
evaluation subset excludes samples with background music label,
however, we provide VGGSounder with all samples and allow user
to choose his preferred regime, if necessary.

B. Class label frequency in VGGSounder
Fig. 8 shows the frequency of the 40 most common class labels by
modality. We observe that the label distribution appears to be very
similar for visible classes and for classes that are audible and visible.
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This matches the label modality distribution in Figure 3B in the main
paper. Furthermore, we observe that the class label male speech is occurs more frequently than female speech .

C. Model evaluations and input prompts

This section provides additional details about the evaluated models, input prompts and evaluation methodology used in the
zero-shot and LLM-assisted evaluations described in Sec. 5 of the paper. Specifically, we detail the prompts and methods for
generating classification predictions for the models in the Gemini family [73] and for the open-source foundational models
VideoLLaMA-2 [21], Unified-IO 2 [53], PandaGPT [72], and Ola [52].

C.1. Models

CAV-MAE [33] combines contrastive learning with masked data modelling to obtain strong audio-visual embeddings, used
for downstream retrieval and classification tasks. We use the multi-modal CAV-MAE-Scale+ model, pretrained on AudioSet
and fine-tuned on VGGSound. Following [33], unimodal and multi-modal variants use original pretrained model but we
fine-tune them on VGGSound only using the respective modality.

DeepAVFusion [57] integrates complementary features from the audio and visual modalities using a deep fusion mechanism,
enhancing joint processing for classification tasks. We use publicly available checkpoints for unimodal and multi-modal
models pre-trained on AudioSet and we then fine-tune them on VGGSound.

AV-Siam [49] uses a two-stream network to learn joint embeddings from audio and visual data. By maximising similarity
for corresponding pairs and minimising it for non-corresponding pairs, the model captures meaningful relationships between
modalities. We use public checkpoints of AV-Siam pre-trained on AudioSet, to then fine-tune it on VGGSound.

Equi-AV [43] is a transformer-based model that focusses on learning invariant embedding representations through an equiv-
ariant learning approach, making it robust to input variations. Again, we fine-tune original model pre-trained on AudioSet
using unimodal or multi-modal VGGSound data.

Gemini 1.5 Flash, Gemini 1.5 Pro and Gemini 2.0 Flash [73] are mixture-of-experts transformer models that process both
audio and visual information. For classification, the models are prompted to output class labels from the VGGSound class list
that match the input video clip, along with a caption. Unlike models trained on VGGSound, the Gemini models are assumed
to be free from VGGSound-specific biases. The complete input prompts are provided in Appendix C.

VideoLLaMA-2.1-AV (VideoLLaMA-2) [21] is a multi-modal foundation model that ingests audio and visual information in
two branches that independently process vision-language and audio-language data. The two branches are connected via a
language model. VideoLLaMA-2 exhibits strong results on audio-visual question-answering and captioning tasks. Details
about the model and prompts used are detailed in Appendix C.

Unified-IO-2 [53] is a 7B-parameter autoregressive encoder–decoder model that tokenises text, images, audio, and discrete
actions into one shared sequence, enabling “any-to-any” understanding and generation.

Panda-GPT [72] augments a frozen Vicuna-13B language model with ImageBind encoders by using a single linear projection
and LoRA adapters. These are trained on only 160k image-text instruction pairs. Despite this lightweight fine-tuning, the
model follows instructions across six modalities (image/video, audio, text, depth, thermal, IMU) and can seamlessly compose
their semantics in zero-shot settings.

Ola [52] is an omni-modal 7B LLM that progressively aligns modalities—starting with image–text, and then adding speech
and finally audio-visual video. It uses local–global attention fusion, dual audio encoders (Whisper [68] + BEATs [17]) and
sentence-wise streaming speech decoding. This staged training yields balanced, competitive accuracy for image QA, video
QA, and speech recognition.

Motivation for LLM-assisted evaluation
In Sec. 5, we briefly mentioned standard classification strategies for foundation models, such as:

• Directly asking for a class without providing a list of available classes (direct),
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Some models, such as VideoLLaMA-2, Unified-IO-2, and PandaGPT, were pretrained on VGGSound. For certain prompts,
they return valid VGGSound classes, which makes character-level comparison feasible. However, their overall performance
on VGGSounder is low, as most outputs are synonym classes not included in the original class set.

• Prepending a list of all available classes to the classification prompt (zero-shot),
Here, we try to mitigate character-level comparison issues by prepending all 309 class names before the prompt: “Annotate
the video, explain in detail what is happening in the video. Use classes from the provided list in the captioning and also add
yours.” This approach works well for closed-source foundation models but performs extremely poorly on all open-source
models, most likely due to their smaller effective context window.

• Asking 309 independent questions, one per class, for every sample (multi-prompt).
This strategy avoids the context length limitation. Instead of including all class names at once, we ask 309 questions per
sample, each with the prompt: “Do you see or hear the following class ‘class’ in the video? Answer only with yes or no.”
While this pipeline yields higher classification scores, it is computationally expensive and still fails to fully capture the video
understanding capabilities of most open-source foundation models.

In conclusion, all the above strategies yield low performance (e.g., low F1 scores) and fail to reliably capture a model’s video
understanding. To address this, we adopt a hybrid approach: we use the zero-shot strategy for closed-source models and
introduce an LLM-assisted evaluation protocol for open-source foundation models.

Gemini models The Gemini models can handle long prompts very well. Thus, to generate classification predictions with
models from the Gemini family, we used a zero-shot evaluation protocol. Specifically, we provided the models with an input
prompt, a list of all class names in VGGSound separated with commas, and an input video file. We used the following text
template:

{CLASSES}
{VIDEO}
Annotate the video, explain in detail what is happening in the video. Use classes from
the provided list in the captioning and also add yours.

LLM-assisted evaluation We evaluated all other foundation models using LLM-assisted evaluation.
Building on similar approaches, 3 we employ Qwen3 [82] (32B quantised to 8 bits) as our LLM for evaluating the alignment
between model-generated outputs and the ground truth.
Specifically, for each sample, the open-source foundation models are asked the following questions depending on the input
modality:

A:
What actions are being performed in this audio, explain all sounds and actions in the
audio? Please provide a short answer.

V/AV:
What actions are being performed in this video, explain all sounds and actions in the
video? Please provide a short answer.

The generated answer (video/audio captioning text) and the target labels (list of classes separated with comma) are then both
supplied to the Qwen3 evaluator that receives the following system prompt.

3We found the VideoLLaMA-2 appendix [21], PointLLM appendix [81], and the Unified-IO 2 code base https://github.com/allenai/
unified-io-2/blob/502ac4d81239f82c891a9f412b000c3c8d4e2946/t5x/examples/unified_io/data/prompt_dict.py
to be very useful.
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LLM system prompt

You are an intelligent chatbot designed for evaluating the correctness of generative outputs
for classification pairs. Your task is to compare the predicted answer with the correct

answer and determine if they match meaningfully. Here’s how you can accomplish the task:

- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.
- The correct answer, might contain multiple classes. Treat them independently and evaluate
the correctness of all them w.r.t predicted answer.

Provide your evaluation only as a yes/no and score where the score is an integer value
between 0 and 5, with 5 indicating the highest meaningful match.

Please generate the response in the form of a Python dictionary string where names of
classes are keys and values are dictionary strings with keys ’pred’ and ’score’, where value
of ’pred’ is a string of ’yes’ or ’no’ and value of ’score’ is in INTEGER, not STRING.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary
string. For example, your response should look like this:

{"male speech, man speaking": {"pred": "yes", "score": 4}, "playing banjo": {"pred": "no", "
score": 0}}

Example 1.

<Question>
Identify the main sounds present in the given audio clip with a few words.

<Correct Answers>
["cat caterwauling", "cat meowing"]

<Predicted Answer>
The main sounds present in the given audio clip are:

1. A ticking sound, possibly from a clock or timer.
2. A mechanical sound, which could be from a machine or device.
3. A human voice, which is speaking in the background.

Output: {"cat caterwauling": {"pred": "no", "score": 0}, "cat meowing": {"pred": "no", "
score": 0}}

Example 2.

<Question>
What actions are being performed in this audio, explain all sounds and actions in the audio?
Please provide a short answer.

<Correct Answers>
["cuckoo bird calling", "mynah bird singing", "bird chirping, tweeting"]

<Predicted Answer>
The audio features a cuckoo bird calling in the distance and some chirping and tweeting from
smaller birds.

Output: {"cuckoo bird calling": {"pred": "yes", "score": 5}, "mynah bird singing": {"pred":
"no", "score": 0}, "bird chirping, tweeting": {"pred": "no", "score": 5}}
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Example 3.

<Question>
What actions are being performed in this video, explain all sounds and actions in the video?
Please provide a short answer.

<Correct Answers>
["male speech, man speaking", "playing hammond organ"]

<Predicted Answer>
The video shows a man who is playing regular piano and speaking with someone.

Output: {"male speech, man speaking": {"pred": "yes", "score": 5}, "playing hammond organ":
{"pred": "yes", "score": 3}}

User message template

<Question>
{QUESTION}

<Correct Answers>
{ANSWERS}

<Predicted Answer>
{CAPTION}

Qwen3 then outputs a Python-formatted dictionary mapping for each target class. The dictionary contains binary “pred”
decision (yes/no) and a nuanced confidence score (0–5), accommodating synonymy and paraphrasing.

{"male speech, man speaking": {"pred": "yes", "score": 5}, "playing hammond organ":
{"pred": "yes", "score": 3}}

This flexible scoring relaxes the strict label matching, yielding richer, semantically-aware assessments that better reflect
human judgment and are align with recent “LLM-as-judge” [34] paradigms that have demonstrated enhanced correlation
with human evaluators across a diverse set of tasks and domains.

D. Additional quantitative analysis
This appendix extends our quantitative analyses presented in Sec. 5.1 of the main paper, providing further insights into model
behaviour on both VGGSound and the newly introduced VGGSounder benchmark.

D.1. Model performance on VGGSound
We present the classification performance of state-of-the-art models on the original VGGSound test data in Fig. 9. We observe
that the multi-label hit accuracy on VGGSounder reported in Tab. 2 in the main paper significantly raises the performance
across all models. This suggests that the models predict classes that were not present in the original VGGSound labelling,
despite those being correct.
Fig. 10 further compares the averaged F1-scores between the “Foundation model” and “Embedding model” families, high-
lighting that evaluations on the original VGGSound consistently underestimate model performance across all modalities
when compared to evaluations on VGGSounder.
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Accuracy ↑ µ ↓
Models a v av µA µV µA∩V

CAV-MAE 59.05 45.57 65.08 4.71 4.84 0.67
DeepAVFusion 40.82 27.24 53.10 4.18 3.17 0.07
Equi-AV 46.68 24.84 50.08 6.91 5.51 0.98
AV-Siam 56.91 47.27 55.25 13.17 8.92 3.92

Gemini 1.5 Flash 0.31 22.12 23.60 1.51 4.17 0.09
Gemini 1.5 Pro 1.29 25.77 21.31 1.62 5.41 0.24
Gemini 2.0 Flash 5.70 20.29 19.39 2.50 4.77 0.63

VideoLLaMA 2 27.98 17.01 21.46 11.16 2.85 1.42
Unified-IO 2 32.28 20.24 52.40 4.88 3.42 0.87
PandaGPT 5.20 7.65 8.95 4.51 4.48 0.94
OLA 10.71 8.63 14.29 7.61 4.05 0.71

Figure 9. Performance of state-of-the-art models on
VGGSound. We report top-1 classification accuracy for different
input modalities (audio A, visual V, and audio and visual informa-
tion AV). µ is modality confusion metric defined in Sec. 5
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Figure 10. Performance of state-of-the-art families on
VGGSound compared to VGGSounder. Radar plots illustrate
the average F1-scores across modalities for two model families:
“Foundation models” and “Embedding models” (Tab. 2).

D.2. Co-occurrence matrix on VGGSound
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Figure 11. Co-occurrence counts among a subset of VGGSound classes,
estimated on the VGGSound test set by the CAV-MAE model. Each cell
indicates how frequently two classes appear together, highlighting labels
that share overlapping acoustic cues (e.g., playing drum kit and
playing bass drum ). Best viewed zoomed in on a screen.

To further illustrate the issue of class overlap de-
scribed in Sec. 3 of our paper, we include an anal-
ysis of class co-occurrences in predictions by the
CAV-MAE [33] model in Fig. 11. Specifically, we
provide a co-occurrence matrix highlighting fre-
quent simultaneous predictions of certain classes.
Notably, labels such as playing drum kit and
playing bass drum are frequently predicted
together, as they are not mutually exclusive. This
analysis supports our identification of overlap-
ping classes as a key limitation in the original
VGGSound annotations and demonstrates the need
for explicitly multi-label approaches in video clas-
sification tasks.

D.3. Classification results for other k

Tab. 7 extends the evaluation presented in the main
paper by showing multi-label video classification
results on VGGSounder for varying numbers of
top-k predictions, specifically for k ∈ {3, 5, 10}.
These additional results offer deeper insights into
how model performance changes with an increas-
ing number of predictions. Specifically, one can
notice the opposite behaviour between the F1-
score (goes down with k) and the Hit score (in-
creases with k).

D.4. Performance on subsets of VGGSounder

To comprehensively evaluate model robustness in the presence of common confounders highlighted in Sec. 3 (i.e. meta-labels:
background music, static images, and voice over), we present additional evaluations on distinct subsets of VGGSounder.
Specifically, Tabs. 8 to 13 display the performance of state-of-the-art models on subsets only containing or fully excluding
the meta-labels. These analyses confirm the importance of accounting for modality-specific and meta-label influences.
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Subset Accuracy ↑ F1 ↑ Hit ↑
k Model a v av a v av a v AV

3

CAV-MAE 0.99 0.56 1.09 39.10 35.58 42.92 81.18 72.14 82.55
DeepAVFusion 0.22 0.08 0.68 28.07 22.43 37.36 65.15 50.86 74.75
Equi-AV 0.55 0.24 0.34 33.50 22.78 34.06 73.82 48.13 70.78
AV-Siam 0.83 0.77 0.74 37.36 37.05 40.91 79.32 73.21 79.83

5

CAV-MAE 0.04 0.04 0.03 35.14 30.79 36.00 87.04 78.73 87.64
DeepAVFusion 0.00 0.00 0.00 24.91 19.48 31.06 72.24 58.48 80.38
Equi-AV 0.01 0.01 0.00 30.06 20.44 28.62 80.64 55.67 77.09
AV-Siam 0.02 0.04 0.02 33.13 31.88 34.67 84.81 79.57 85.53

10

CAV-MAE 0.00 0.00 0.00 25.61 21.66 24.36 91.64 85.27 92.01
DeepAVFusion 0.00 0.00 0.00 18.36 14.23 21.06 80.35 67.87 85.70
Equi-AV 0.00 0.00 0.00 22.39 15.24 19.84 87.41 65.49 83.77
AV-Siam 0.00 0.00 0.00 24.15 22.12 23.94 90.11 85.86 90.99

Table 7. Audio-visual video classification results on VGGSounder for k∈{3, 5, 10}. The table is vertically grouped by k. Within each
block, the four models are compared across the three metrics and input modalities.

Impact of background music

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 10.80 19.17 23.84 31.03 31.29 38.60 17.83 22.26 55.96 44.57 54.02 4.26 6.92 0.87
DeepAVFusion 8.15 9.48 20.66 21.66 16.40 33.05 12.68 8.27 39.02 23.32 46.18 2.52 3.32 0.09
Equi-AV 9.11 10.11 19.70 25.33 17.86 32.13 14.75 11.52 45.67 25.44 44.98 5.39 6.09 1.09
AV-Siam 10.46 18.50 21.31 29.55 31.00 34.31 16.53 22.65 53.28 44.15 48.02 10.18 8.83 3.70

Gemini 1.5 Flash 1.15 13.91 14.75 13.31 34.57 38.36 11.49 22.10 30.47 44.24 53.50 11.53 3.65 0.78
Gemini 1.5 Pro 1.90 20.84 20.75 17.40 46.04 47.93 13.68 27.50 33.65 62.36 67.51 3.91 3.96 0.61
Gemini 2.0 Flash 1.08 11.32 10.44 11.33 32.14 32.97 9.84 21.84 18.62 39.81 43.11 2.31 4.39 0.83

VideoLLaMA 2 11.24 18.63 22.66 36.43 43.18 46.81 23.97 33.41 53.86 43.65 48.37 15.27 5.35 2.83
Unified-IO 2 9.11 13.45 24.49 28.90 29.07 44.69 20.77 22.97 42.55 28.82 52.24 5.92 5.87 1.57
PandaGPT 1.86 4.64 5.79 12.75 17.64 18.11 8.65 16.09 14.96 15.50 15.18 6.87 5.70 2.22
Ola 8.53 9.77 19.18 35.87 25.44 43.61 29.25 17.17 44.35 23.43 44.85 11.74 7.39 1.70

Table 8. Audio-visual video classification results on the subset of VGGSounder that is labelled as containing background music.
Similar to Table 1 in the main paper, we report multi-label classification metrics (subset accuracy, F1-score, Hit accuracy, modality
confusion (µ)) for audio- a(A), visual - v(V ), audio-visual - av(AV ), audio-only - a(A¬V ) and video-only - v(V ¬A) inputs.

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 13.19 19.23 24.49 34.46 34.91 42.62 13.94 19.00 62.29 53.44 64.17 3.58 6.43 0.77
DeepAVFusion 10.19 11.10 21.53 25.31 21.29 37.35 10.37 10.55 45.77 32.61 56.27 3.74 3.93 0.17
Equi-AV 11.60 10.52 20.00 29.39 20.42 34.69 12.55 10.65 53.12 31.26 52.24 6.97 7.13 1.38
AV-Siam 12.79 19.75 22.83 33.30 35.41 39.43 12.90 18.21 60.19 54.20 59.36 9.36 8.80 3.58

Gemini 1.5 Flash 1.78 14.44 16.44 14.49 36.98 42.52 15.61 21.61 32.73 47.36 59.10 10.22 4.25 0.77
Gemini 1.5 Pro 3.05 20.86 22.53 19.26 49.73 53.74 17.73 22.90 35.03 69.23 75.42 2.09 4.85 0.57
Gemini 2.0 Flash 1.85 12.54 12.69 11.80 34.08 36.45 6.19 18.90 18.51 43.83 47.72 2.39 5.43 1.00

VideoLLaMA 2 12.86 19.85 24.47 38.87 47.82 52.35 20.34 28.08 58.91 52.02 59.80 12.72 5.46 2.95
Unified-IO 2 11.94 11.56 25.61 35.31 27.92 48.89 21.38 16.53 54.39 31.05 65.11 8.70 5.16 1.79
PandaGPT 3.19 4.19 5.46 18.73 18.56 20.85 16.82 14.40 21.08 17.01 18.82 7.59 5.90 2.47
Ola 14.11 8.69 18.19 47.70 24.85 46.48 40.44 13.45 59.05 24.57 51.51 15.47 6.80 2.49

Table 9. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing background music
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A side-by-side inspection of the two subsets (Tab.8 vs. Tab.9) reveals several interesting points.

(i) Universal but modality-specific gains. Every method improves in terms of F1 and Hit scores when the soundtrack is
removed, that is especially clear for the audio input modality: for the embedding family we register jumps of up to +5% in
F1 for both audio and visual inputs. Consequently, joint audio–visual inputs rise in performance only slightly (+3–5%).

(ii) Same trend for foundation models, but with caveats. Foundation checkpoints with a meaningful audio encoder echo the
pattern (Unified-IO2 +7%, Ola +12%); in contrast, the Gemini family remains audio-weak, suggesting that their publicly
released models rely heavily on vision.

(iii) Intuition. Background music tends to mask class-specific foreground sounds; once that mask is removed the audio
encoder can finally “hear” discriminative cues, whereas vision—being agnostic to the soundtrack—is affected only by the
changed clip mix. With noisy audio, every model relies more on the V modality as a safety net, which explains why their
baseline performance remains respectable despite the severe audio corruption.

Altogether, these observations confirm that background music constitutes a hard confounder, forcing models to rely on vision.

Impact of static images

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 22.13 19.48 27.42 38.24 27.21 37.62 35.18 15.03 61.20 34.74 47.28 4.22 6.85 0.35
DeepAVFusion 15.98 10.96 23.20 28.65 15.80 31.50 26.43 6.33 45.89 20.21 39.59 4.24 3.87 0.00
Equi-AV 19.00 10.39 22.50 32.59 14.24 31.33 30.14 9.25 52.15 18.18 39.37 5.62 4.22 0.35
AV-Siam 22.04 19.81 24.25 37.46 28.10 34.27 33.61 13.87 59.95 35.88 43.06 10.72 7.91 2.64

Gemini 1.5 Flash 1.43 13.47 15.64 9.35 29.51 33.27 8.15 18.63 20.25 30.19 40.60 10.90 4.57 0.88
Gemini 1.5 Pro 2.33 22.08 23.37 14.32 42.50 44.89 12.52 24.44 24.19 51.30 57.47 3.87 5.45 0.53
Gemini 2.0 Flash 3.85 10.88 13.88 13.54 26.91 31.64 12.82 13.75 19.53 29.87 38.31 1.93 3.87 0.88

VideoLLaMA 2 19.00 18.18 23.73 42.36 37.90 43.22 39.41 27.54 56.45 32.31 40.60 15.47 5.10 2.64
Unified-IO 2 17.92 9.58 28.47 35.87 22.12 45.95 33.45 15.93 47.49 18.34 47.80 7.38 3.34 1.05
PandaGPT 3.32 4.87 5.27 14.15 13.71 15.32 12.75 11.01 14.78 11.36 11.78 8.96 5.62 2.11
Ola 14.87 8.60 18.28 37.80 19.72 38.88 33.53 10.53 42.29 15.58 34.97 15.99 5.27 1.41

Table 10. Audio-visual video classification results on the subset of VGGSounder that is labelled as containing static images

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 11.98 19.21 24.24 33.49 34.60 42.13 12.31 20.02 61.05 52.70 63.11 3.67 6.50 0.81
DeepAVFusion 9.30 10.81 21.30 24.31 20.67 36.84 8.96 10.33 44.34 31.48 55.19 3.50 3.82 0.16
Equi-AV 10.49 10.45 19.84 28.33 20.23 34.39 10.91 10.94 51.64 30.81 51.51 6.75 7.08 1.37
AV-Siam 11.57 19.52 22.49 32.24 34.95 38.76 11.26 19.51 58.76 53.23 58.06 9.44 8.85 3.64

Gemini 1.5 Flash 1.68 14.39 16.17 14.62 36.82 42.14 15.43 21.92 33.25 47.59 58.92 10.42 4.13 0.77
Gemini 1.5 Pro 2.87 20.80 22.17 19.22 49.36 53.07 17.24 23.81 35.60 68.82 74.80 2.34 4.66 0.58
Gemini 2.0 Flash 1.53 12.40 12.23 11.58 34.02 36.02 6.43 19.91 18.45 43.75 47.31 2.39 5.31 0.97

VideoLLaMA 2 12.04 19.70 24.18 38.13 47.41 51.78 18.90 29.21 58.05 51.42 58.61 13.06 5.46 2.94
Unified-IO 2 10.88 12.00 25.28 33.99 28.31 48.33 19.64 17.98 52.46 31.24 63.57 8.26 5.37 1.78
PandaGPT 2.91 4.24 5.53 17.83 18.58 20.60 15.01 15.00 20.29 17.00 18.49 7.40 5.87 2.44
Ola 12.88 8.89 18.36 46.03 25.12 46.27 38.29 14.45 57.30 24.78 51.05 14.78 6.97 2.40

Table 11. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing static images

A side-by-side inspection of the “static image” split (Tab.,10) and its complement (Tab.,11) shows four salient effects.

(i) Vision takes the hit, audio steps up. Across the classic embedding models, the visual branch loses on average 6–7%
absolute in F1, while using audio inputs results in gains +3–6%. The same holds true for the joint audio-visual. Hit scores
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mirror the trend: Hit for visual inputs plunges by up to 20%, whereas Hit for audio inputs remains flat or edges upward for
most of the models.

(ii) Foundation models react unevenly. VideoLLaMA2 loses 8% on vision yet gains 3% on audio—whereas the vision-
centric Gemini family suffers a broad decline, unable to compensate for the poor visual signal.

(iii) Intuition. Static clips provide far less discriminative visual evidence than genuine video, reducing motion and viewpoint
cues. The audio track, in contrast, is untouched; consequently, models shift their reliance toward the acoustic channel,
explaining the systematic audio gain and the parallel vision loss.

(iv) Modality-confusion drifts upward. With vision degraded, many architectures become more uncertain about which modal-
ity to trust; a few (AV-Siam) even over-correct, raising µA by +1.8 while slightly easing µV .

In sum, static imagery acts as the visual analogue to background music: it removes discriminative content in one modality
(vision) and forces models to lean on the other (audio), exposing how well a model can rebalance modalities.

Impact of voice-over narration

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 2.78 14.34 17.38 26.68 28.36 35.37 11.19 25.50 51.65 43.55 53.62 4.21 7.06 0.65
DeepAVFusion 2.02 9.41 15.33 16.79 17.78 29.13 6.51 13.99 32.50 27.34 44.23 2.69 3.79 0.18
Equi-AV 3.51 7.75 14.53 22.45 15.44 28.14 9.62 10.74 43.45 23.71 42.65 7.47 6.35 1.07
AV-Siam 2.73 13.94 15.66 25.72 28.51 31.11 9.56 26.85 49.79 43.78 47.15 10.97 8.96 3.50

Gemini 1.5 Flash 5.26 9.43 10.85 29.43 30.61 34.01 27.55 23.61 63.71 40.02 48.28 22.18 4.57 1.36
Gemini 1.5 Pro 7.73 17.70 16.07 34.58 46.22 50.84 29.26 27.76 68.30 65.70 75.50 4.15 4.27 0.95
Gemini 2.0 Flash 0.72 7.40 8.36 11.87 27.47 29.85 6.10 21.62 19.95 36.38 40.57 2.79 5.81 1.30

VideoLLaMA 2 6.34 16.08 19.40 34.98 42.76 47.72 21.74 36.14 54.43 47.60 54.69 13.58 5.40 2.43
Unified-IO 2 4.69 9.08 18.15 29.81 24.80 40.94 23.17 21.65 48.61 27.13 53.44 9.49 5.16 2.02
PandaGPT 3.66 4.28 4.86 20.96 18.58 18.92 19.07 17.73 26.75 17.47 18.03 9.79 6.52 3.32
Ola 15.46 7.06 16.13 54.14 23.48 48.53 47.31 16.08 76.08 24.64 57.53 16.19 4.98 2.85

Table 12. Audio-visual video classification results on the subset of VGGSounder that is labelled as containing voice over narrations

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 14.18 19.92 25.38 34.92 35.19 42.94 15.67 18.90 62.44 53.10 63.70 3.62 6.44 0.81
DeepAVFusion 10.94 11.02 22.26 25.84 20.89 37.77 11.84 9.55 46.21 31.52 56.03 3.65 3.83 0.15
Equi-AV 12.23 10.83 20.73 29.58 20.67 35.18 13.80 10.84 52.88 31.18 52.19 6.59 7.04 1.37
AV-Siam 13.74 20.34 23.56 33.66 35.59 39.70 14.66 18.09 60.17 53.70 58.90 9.29 8.79 3.61

Gemini 1.5 Flash 1.14 15.06 16.91 12.18 37.42 42.94 12.38 21.45 27.71 47.79 59.56 8.76 4.09 0.69
Gemini 1.5 Pro 2.11 21.31 23.11 16.42 49.55 53.10 14.29 23.32 29.87 68.38 73.86 2.15 4.75 0.53
Gemini 2.0 Flash 1.84 13.04 12.87 11.68 34.66 36.73 7.38 19.23 18.32 44.10 47.84 2.31 5.17 0.92

VideoLLaMA 2 13.45 20.15 24.84 38.95 47.72 52.06 21.18 28.23 58.44 50.99 58.30 13.10 5.45 3.00
Unified-IO 2 12.37 12.29 26.46 34.79 28.58 49.28 20.85 17.37 52.60 31.17 64.26 8.05 5.30 1.71
PandaGPT 2.83 4.27 5.61 17.05 18.39 20.65 13.90 14.34 18.89 16.65 18.23 7.14 5.77 2.30
Ola 12.67 9.14 18.68 44.05 25.16 45.64 35.76 13.96 53.30 24.33 49.35 14.64 7.18 2.29

Table 13. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing voice over narra-
tions

Considering the “voice-over” split (Tab.,12) with its complement (Tab.,13) exposes a two–way story that depends on how
each model treats speech.

(i) Embedding models are confused. For all four embedding models, results when using audio inputs jump by roughly
+5–10% in F1 when the narration track is removed, and Hit for audio climbs in parallel. This confirms that spoken commen-
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tary masks class-specific sounds. However, once silenced, the models can finally “hear” the underlying events, again, similar
to the background music meta-class.

(ii) Reduced performance for speech-centric foundation models. Gemini 1.5 and PandaGPT fail when narration disappears:
F1 for audio inputs plunges by around −17% and Hit for audio inputs drops by up to 39%. Our intuition is, that these models
exploit the speech content as a shortcut.

(iii) Middle ground for broad-coverage LMMs. Unified-IO 2 and VideoLLaMA-2 are between the two extremes: they register
a moderate audio lift (+4–5%) and a small visual bump (+1–2%), yielding a ,+1–, 8% improvement in terms of F1 score for
audio-visual inputs. We hypothesise that their balanced training helps them survive the removal of speech while still profiting
from the clearer acoustic scene.

(iv) Modality-confusion µ reacts in both directions. For speech-reliant models, clearer acoustics reduce uncertainty, whereas
for event-focused encoders (trained on VGGSound) it slightly rises because the freshly revealing audio now dominates the
fusion gate.

Taken together, voice-over narration acts as the mirror image of background music: it can be a helpful shortcut for speech-
aware foundation models, yet a destructive mask for sound classifiers trained on VGGSound.

Confounder–free subset

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA∩V

CAV-MAE 13.51 19.53 24.90 34.80 35.59 43.21 11.71 18.99 62.87 54.68 65.26 3.52 6.42 0.80
DeepAVFusion 10.56 11.04 21.84 25.86 21.50 38.01 8.98 10.27 46.74 33.04 57.43 3.86 3.90 0.16
Equi-AV 11.75 10.73 20.19 29.57 20.97 35.17 10.67 10.77 53.42 32.22 53.11 6.85 7.31 1.42
AV-Siam 13.02 20.08 23.21 33.58 36.03 39.99 10.82 17.60 60.67 55.35 60.39 9.29 8.86 3.65

Gemini 1.5 Flash 1.27 14.93 16.90 12.86 37.67 43.46 14.05 21.55 29.32 48.58 60.70 8.79 4.13 0.71
Gemini 1.5 Pro 2.35 20.86 22.97 17.26 50.01 53.89 15.69 22.27 31.43 69.78 75.44 1.97 4.80 0.55
Gemini 2.0 Flash 1.85 13.01 12.93 11.73 34.83 37.09 5.89 18.93 18.38 44.86 48.56 2.39 5.36 0.95

VideoLLaMA 2 13.02 20.08 24.94 38.87 48.36 52.84 17.78 27.52 59.11 52.65 60.42 12.61 5.37 2.97
Unified-IO 2 11.94 11.76 25.96 35.18 28.25 49.42 18.84 16.01 54.07 31.62 66.07 8.41 5.24 1.75
PandaGPT 3.00 4.09 5.43 18.21 18.57 21.08 16.00 14.68 20.34 17.06 18.98 7.17 5.76 2.34
Ola 13.38 8.86 18.24 46.34 25.07 46.10 38.24 13.13 56.92 24.78 50.88 15.23 7.08 2.46

Table 14. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing background music,
static images, or voice over narrations

The split that simultaneously excludes background music, static images, and voice-over narration (Tab.,14) serves as an
upper-bound reference and reveals how each system performs when no major nuisance factor is present.

Removing all three meta-classes unlocks the highest scores yet observed and sharpens modality agreement.

D.5. Ablation study for additional labels in VGGSounder

In this section, we conduct an ablation study to quantify the benefits introduced by different components of our annotation
pipeline described in Section 3. Specifically, we compare model performance on three variants of ground-truth labels:
(a) Original VGGSound labels extended only with automatically added synonymous and superclass labels, (b) Original
VGGSound labels extended exclusively with human annotations, (c) Original VGGSound labels extended comprehensively
with both automatically added labels and human annotations (VGGSounder).
Detailed performance results in Tab. 16 and Tab. 17 demonstrate a consistent improvement across HIT and F1 metrics when
employing the complete set of annotations (scenario c). This clearly illustrates the reduction in false-positive identifica-
tions and improved accuracy achieved through our annotation pipeline. This again highlights the importance of combining
automated processes with thorough human verification in creating robust benchmarks for evaluating audio-visual models.
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Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a v av µA µV µA∩V

Gemini 1.5 Flash 0.31 22.12 23.60 1.71 33.15 35.94 2.98 31.83 41.23 1.51 4.17 0.09
Gemini 1.5 Pro 1.29 25.77 21.31 4.43 36.41 35.62 6.11 41.72 45.70 1.62 5.41 0.24
Gemini 2.0 Flash 5.70 20.29 19.39 9.95 32.34 33.91 9.49 30.55 35.31 2.50 4.77 0.63

VideoLLaMA 2 27.98 17.01 21.46 41.32 31.46 36.80 30.05 22.72 27.90 11.16 2.85 1.42
Unified-IO 2 32.28 20.24 52.40 43.71 33.84 64.06 33.71 22.84 54.20 4.88 3.42 0.87
PandaGPT 5.20 7.65 8.95 12.68 16.83 19.55 8.54 11.23 13.30 4.51 4.48 0.94
Ola 10.71 8.63 14.29 23.33 17.81 28.86 18.06 10.95 22.41 7.61 4.05 0.71

Table 15. Audio-visual video classification results on VGGSound inputs.

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a v av µA µV µA∩V

Gemini 1.5 Flash 1.67 14.49 16.42 14.42 36.72 41.93 32.25 46.43 57.59 10.48 4.20 0.80
Gemini 1.5 Pro 2.86 21.32 22.59 19.17 49.15 52.85 34.72 67.25 73.33 2.43 4.76 0.58
Gemini 2.0 Flash 1.83 12.83 12.66 11.75 33.98 36.00 18.29 42.72 46.44 2.35 5.34 0.95

VideoLLaMA 2 12.71 19.40 23.98 38.37 47.26 51.59 56.94 50.22 57.36 13.04 5.48 2.87
Unified-IO 2 11.41 11.65 25.99 34.17 28.37 48.54 51.44 30.52 62.39 8.15 5.32 1.74
PandaGPT 2.93 4.27 5.41 17.69 18.55 20.53 19.68 16.53 18.04 7.40 5.81 2.39
OLA 13.32 8.75 18.44 45.89 25.22 46.36 55.76 24.28 50.02 14.59 6.96 2.34

Table 16. Audio-visual video classification results on VGGSound + human annotations.

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a v av µA µV µA∩V

Gemini 1.5 Flash 1.66 14.35 16.15 14.26 36.58 41.84 32.29 46.83 58.14 10.44 4.16 0.77
Gemini 1.5 Pro 2.83 20.85 22.22 18.90 49.12 52.80 34.76 68.05 74.07 2.40 4.69 0.58
Gemini 2.0 Flash 1.70 12.33 12.30 11.70 33.76 35.87 18.53 43.14 46.93 2.37 5.25 0.97

VideoLLaMA 2 12.55 19.64 24.17 38.40 47.11 51.51 57.93 50.57 57.85 13.16 5.44 2.93
Unified-IO 2 11.39 11.89 25.42 34.11 28.10 48.25 52.09 30.66 62.91 8.23 5.28 1.75
PandaGPT 2.94 4.27 5.52 17.61 18.42 20.43 19.89 16.75 18.20 7.47 5.86 2.42
OLA 13.03 8.88 18.36 45.55 24.94 46.04 56.20 24.38 50.37 14.83 6.91 2.36

Table 17. Audio-visual video classification results on VGGSound + human annotations + automatically added labels

26


	Introduction
	Related work
	Limitations of VGGSound
	Building VGGSounder
	Benchmarking audio-visual models
	Re-evaluating the state of the art
	Performance analysis using meta-classes
	Impact of VGGSounder labels

	Discussion
	Conclusion
	VGGSounder: Relabelling VGGSound
	Labelling of the gold-standard subset
	Label proposals
	Human labelling
	Automatically added classes
	Final pipeline

	Class label frequency in VGGSounder
	Model evaluations and input prompts
	Models

	Additional quantitative analysis
	Model performance on VGGSound
	Co-occurrence matrix on VGGSound
	Classification results for other k
	Performance on subsets of VGGSounder
	Ablation study for additional labels in VGGSounder


